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Local Refinement for Partial Differential Equations
Variety of problems that exhibit multiscale behavior, in the form of localized
large gradients separated by large regions where the solution is smooth.

• Shocks and interfaces.

• Self-gravitating flows in astrophysics.

• Complex engineering geometries.

• Combustion.

• Magnetohydrodynamics: space weather, magnetic fusion.

In adaptive methods, one adjusts the computational effort locally to maintain a
uniform level of accuracy throughout the problem domain.



Block-Structured Local Refinement (Berger and Oliger, 1984)

1
n+ 2

t
10 2

levellevellevel

t

t

sync sync

sync

n+1

n

t

refinement
level

Refined regions are organized into logically rectangular patches
Refinement performed in time as well as in space.



Chombo: a Software Framework for Block-Structured AMR
Requirement: to support a wide variety of applications that use block-structured
AMR using a common software framework.

• Mixed-language model: C++ for higher-level data structures, Fortran for
regular single-grid calculations.

• Reuseable components. Component design based on mapping of
mathematical abstractions to classes.

• Build on public-domain standards: MPI, HDF5, VTK.

• Interoperability with other SciDAC ISIC tools: grid generation (TSTT), solvers
(TOPS), performance analysis tools (PERC).

Previous work: BoxLib (LBNL/CCSE), KeLP (Baden, et. al., UCSD), FIDIL
(Hilfinger and Colella).



Layered Design

• Layer 1. Data and operations on unions of boxes – set calculus, rectangular
array library (with interface to Fortran), data on unions of rectangles, with
SPMD parallelism implemented by distributing boxes over processors.

• Layer 2. Tools for managing interactions between different levels of refinement
in an AMR calculation – interpolation, averaging operators, coarse-fine
boundary conditions.

• Layer 3. Solver libraries – AMR-multigrid solvers, Berger-Oliger
time-stepping.

• Layer 4. Complete parallel applications.

• Utility layer. Support, interoperability libraries – API for HDF5 I/O,
visualization package implemented on top of VTK, C API’s.



Examples of Layer 1 Classes (BoxTools )

• IntVect i ∈ Zd. Can translate i1 ± i2, coarsen i
s , refine i ∗ s.

• Box B ⊂ Zd is a rectangle: B = [ilow, ihigh]. B can be translated, coarsened,
refined. Supports different centerings (node-centered vs. cell-centered) in each
coordinate direction.

• IntVectSet I ⊂ Zd is an arbitrary subset of Zd. I can be shifted, coarsened,
refined. One can take unions and intersections, with other IntVectSet s and
with Boxes, and iterate over an IntVectSet . Useful for representing irregular
sets.

• FArrayBox A(Box B, int nComps) : multidimensional arrays of Reals
constructed with B specifying the range of indices in space, nCompthe number
of components. Real* FArrayBox::dataPointer returns pointer to the
contiguous block of data that can be passed to Fortran.



Example: explicit heat equation solver on a single grid

// C++ code:

Box domain(IntVect:Zero,(nx-1)*IntVect:Unit);

FArrayBox soln(grow(domain,1), 1);

soln.setVal(1.0);

for (int nstep = 0;nstep < 100; nstep++)

{

heatsub2d_(soln.dataPtr(0),

&(soln.loVect()[0]), &(soln.hiVect()[0]),

&(soln.loVect()[1]), &(soln.hiVect()[1]),

domain.loVect(), domain.hiVect(),

&dt, &dx, &nu);

}



c Fortran code:

subroutine heatsub2d(phi,nlphi0, nhphi0,nlphi1, nhphi1,

& nlreg, nhreg, dt, dx, nu)

real*8 lphi(nlphi0:nhphi0,nlphi1:nhphi1)

real*8 phi(nlphi0:nhphi0,nlphi1:nhphi1)

real*8 dt,dx,nu

integer nlreg(2),nhreg(2)

c Remaining declarations, setting of boundary conditions goes here.

...

do j = nlreg(2), nhreg(2)

do i = nlreg(1), nhreg(1)

lapphi =

& (phi(i+1,j)+phi(i,j+1)

& +phi(i-1,j)+phi(i,j-1)

& -4.0d0*phi(i,j))/(dx*dx)

lphi(i,j) = lapphi

enddo

enddo



c Increment solution with rhs.

do j = nlreg(2), nhreg(2)

do i = nlreg(1), nhreg(1)

phi(i,j) = phi(i,j) + nu*dt*lphi(i,j)

enddo

enddo

return

end



Distributed Data on Unions of Rectangles
Provides a general mechanism for distributing data defined on unions of rectangles onto
processors, and communications between processors.
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• Metadata of which all processors have a copy: BoxLayout is a collection of Boxes and
processor assignments: {Bk, pk}nGrids

k=1 . DisjointBoxLayout:public BoxLayout is a
BoxLayout for which the Boxes must be disjoint.

• template <class T> LevelData<T> and other container classes hold data
distributed over multiple processors. For each k = 1 ... nGrids , an ”array” of type
T corresponding to the box Bk is allocated on processor pk. Straightforward API’s for
copying, exchanging ghost cell data, iterating over the arrays on your processor in a
SPMD manner.



Software Reuse by Templating Dataholders
Classes can be parameterized by types, using the class template language
feature in C++.

BaseFAB<T> is a multidimensional array for any type T.
FArrayBox: public BaseFAB<Real>

In LevelData<T> , T can be any type that ”looks like” a multidimensional array.

Examples include:

• Ordinary multidimensional arrays, e.g. LevelData<FArrayBox> .

• A composite array type for supporting embedded boundary computations

• Binsorted lists of particles, e.g. BaseFab<List<ParticleType>>



Example: explicit heat equation solver, parallel case
p=0 p=1 p=2

p=3 p=0 p=1

p=2 p=3 p=0

Want to apply the same algorithm as before, except that the data for the domain
is decomposed into pieces and distributed to processors.

• LevelData<T>::exchange() : obtains ghost cell data from valid regions on
other patches.

• DataIterator : iterates over only the patches that are owned on the current
processor.



// C++ code:

Box domain(IntVect:Zero,(nx-1)*IntVect:Unit);

DisjointBoxLayout dbl;

// Break domain into blocks, and construct the DisjointBoxLayout.

makeGrids(domain,dbl,nx);

LevelData<FArrayBox> phi(dbl, 1, IntVect::TheUnitVector());

for (int nstep = 0;nstep < 100;nstep++)

{

...

// Apply one time step of explicit heat solver: fill ghost cell values,

// and apply the operator to data on each of the Boxes owned by this

// processor.

phi.exchange();

DataIterator dit = dbl.dataIterator();

// Iterator iterates only over those boxes that are on this processor.



for (dit.reset();dit.ok();++dit)

{

FArrayBox& soln = phi[dit()];

Box& region = dbl[dit()];

heatsub2d_(soln.dataPtr(0),

&(soln.loVect()[0]), &(soln.hiVect()[0]),

&(soln.loVect()[1]), &(soln.hiVect()[1]),

region.loVect(), region.hiVect(),

domain.loVect(), domain.hiVect(),

&dt, &dx, &nu);

}

}



Layer 2: Coarse-Fine Interactions (AMRTools ).
The operations that couple different levels of refinement are among the most
difficult to implement AMR.

• Interpolating between levels (FineInterp ).

• Averaging down onto coarser grids (CoarseAverage ).

• Interpolation of boundary conditions (PWLFillpatch, QuadCFInterp ).

• Managing conservation at coarse-fine boundaries (LevelFluxRegister ).

These operations typically involve interprocessor communication and irregular
computation.



Layer 3: Reusing Control Structures Via Inheritance (AMRTimeDependent,

AMRElliptic ).
AMR has multilevel control structures which are largely independent of the
details of the operators and the data.

• Berger-Oliger timestepping (refinement in time).

• Multigrid iteration on a union of rectangles. (single AMR level)

• Multigrid iteration on an AMR hierarchy. (multilevel AMR solve)

To separate the control structure from the details of the operations that are being
controlled, we use C++ inheritance in the form of interface classes.



Layer 4: AMR Applications

• A general driver for an unsplit second-order Godunov method for hyperbolic
conservation laws. User provides physics-dependent components (characteristic
analysis, Riemann solver).

• Level solvers, AMR multigrid solvers for Poisson, Helmholtz equations.

• Incompressible Navier-Stokes solver using projection method. Includes
projection operators for single level, AMR hierarchy. Advection-diffusion
solvers.

• Wave equation solver.

• Time-dependent Ginzburg-Landau equation solver.

• Volume-of-fluid algorithm fluid-solid interactions.



AMR Utility Layer

• API for HDF5 I/O.

• Interoperability tools. We are developing a framework-neutral representation
for pointers to AMR data, using opaque handles. This will allow us to wrap
Chombo classes with a C interface and call them from other AMR applications.

• Chombo Fortran - a macro package for writing dimension-independent
Fortran and managing the Fortran / C interface.

• ParmParse class from BoxLib for handling input files.

• Visualization and analysis tools (ChomboVis).



Cartesian Grid Representation of Irregular Boundaries ( EBChombo)
Based on nodal-point representation (Shortley and Weller, 1938) or finite-volume
representation (Noh, 1964).

.



Computation in Complex Geometry



Current Applications (partial list)

• Accelerator design and modelling (LBNL)

• Magnetic fusion (R. Samtaney, S. Jardin, PPPL)

• Star formation; multiphase microgravity flows (NASA CT Program).

• Solid mechanics (G. Miller, UC Davis and LBNL).

• Time-dependent Ginzburg-Landau equations (F. Alexander, LANL).

• Semi-local strings (J. Borrill, LBNL).

• Cosmology (F. Miniati, MPI-Garching).

• Low-Mach number geophysical, astrophysical flows (UC Davis, Univ. of
Chicago ASCI Center).



Gas Dynamics
Unsplit higher-order Godunov scheme with AMR for hyperbolic systems of
equations (AMRGodunov).

Includes flux correction at coarse-fine interfaces for conservation.



Elliptic Equations
AMR elliptic solver – used as standalone code (AMRPoisson) or as solver library
(AMRElliptic: AMRSolver class)

• Implements a multigrid solver for an AMR hierarchy of refined grids.

• Uses multilevel discretizations of the elliptic operators to maintain accuracy
in the presence of coarse-fine interfaces.



Wave Equation Solver

• Write second-order wave equation as first-order system in time.

∂ϕ

∂t
= π

∂π

∂t
= ∆ϕ

• Discretize Laplacian on AMR grid using RK4 in time, quadratic interpolation
in space for coarse-fine boundary conditions.

• Refinement in time: linear interpolation in time for coarse-fine boundary
conditions, treat π as a conserved quantity for the purpose of refluxing.



Particles
AMR-PIC code used in accelerator modelling



Time-dependent Ginzberg-Landau Equations
Diffusion equation with a nonlinear source term – used to model phase-field
dynamics (crystal growth, etc) (with F. Alexander, LANL)



Incompressible AMR Navier-Stokes
AMRINS code

• Implements a projection method for incompressible viscous flow.

• Freestream preservation maintained approximately in the presence of
coarse-fine interfaces using an advection velocity correction computed using
an auxiliary advected scalar.

• Viscous updates performed using L0-stable semi-implicit Runga-Kutta
scheme



Accelerator Design



Magnetohydrodynamics (Samtaney, et. al., 2003)
Fluid representation: AMR for magnetohydrodynamics, based on semi-implicit
methods.

• Explicit upwind discretizations for hyperbolic terms.

• Implicit discretizations for parabolic operators.

• Projection to enforce ∇ · ~B = 0 constraint.



ChomboVis Interactive Visualization and Analysis Tools

• “AMR-aware”

− Block-structured representation of the data leads to efficiency.

− Useful as a debugging tool (callable from debuggers (gdb))

• Visualization tools based on VTK, a open-source visualization library.

• Implementation in C++ and Python

− GUI interface for interactive visualization

− Command-line python interface to visualization and analysis tools, batch
processing capability – goal is a full analysis tool.

• Interface to HDF5 I/O along with C API provides access to broad range of
AMR users. (“Framework-neutral”)



Where it’s heading

Goal is for ChomboVis to become a full data analysis and visualization tool.

• Further evolution of Python scripting interface

• Data analysis functionality

• “Out of core” and parallel functionality for large datasets

• non-rectilinear coordinate systems

• Presentation graphics

Chombo, ChomboVis available from the ANAG website:

• http://seesar.lbl.gov/ANAG/software.html

• New Release, August 15, 2003.
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